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Abstract

The observable universe is homogeneous and isotropic on large scales, but

shows inhomogeneities on scales smaller than 100 Kpc. Cosmological pertur-

bation theory describes the large-scale distribution of dark matter outside the

regime of small scales, where it breaks down due to the perturbations growing

to order one. Moreover, this technique is linear and ignores higher-order cou-

pling which can lead to backreaction. This project explores an effective field

theoretic approach to describing cosmological large-scale structure, modelling

dark matter on large scales as an effective fluid with viscosity induced by small

scale dynamics. This provides a viable alternative to standard perturbation

theory and allows for the incorporation of small-scale feedback on large-scale

structure.
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1 Background

Modern cosmology is based upon the cosmological principle, which posits that the

universe is on large scales homogeneous and isotropic. Spacetime is described by

the Friedmann-Robertson-Walker (FRW) metric:

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
Here, k can take values of −1, 0, 1 based on the overall curvature of the universe,

and a(t) is the scale factor that encodes the expansion of the universe.

The evolution of the scale factor depending on the density and pressure of the

various components in the universe is determined by the Friedmann Equations

( ȧ
a

)2
=

8πG

3
ρ− k

a2
(1)

ä

a
= −4πG

3

(
ρ+ 3p

)
(2)

For each fluid component, we also have the equation of state, which relates the

pressure to the density,

p = wρ (3)

These three equations can be used to solve for the evolution of the scale factor

given the components that make up the universe.

The currently successful theory of cosmology is the Big Bang theory. This

is parameterised by the Lambda-CDM model of the universe, which includes a

cosmological constant and cold dark matter. This model assumes general relativity

to be the correct theory of gravitation, and goes on to explain the inhomogeneities

in the Cosmic Microwave Background, the formation of large scale structure, and

the observed acceleration in the expansion of the universe.

Although the universe appears homogeneous on large scales, locally, we can

observe that there are inhomogeneities, owing to the presence of galaxies and galaxy

clusters. The theory explaining the presence and dynamics of this is called Structure
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Formation.

The presence of nonlinear structures greater in size than 100 Mpc on smaller

scales in the form of galaxy clusters, superclusters, and voids and filaments can

be explained through the principle of gravitational instability. Jeans calculated the

dynamics of the growth of initial density perturbations in a cloud of gas in 1902, and

the same principles can be used to model the dynamics of structure in the universe.

Structure in the universe is assumed to have evolved from small initial pertur-

bations in density, that are assumed to have been created by the primordial inflaton

field. Structures develop due to the process of gravitational instability and collapse.

Structure formation studies the properties and evolution of these instabilities in

an expanding universe. A complete derivation of the equations for the evolution

of these involving general relativity is involved and complex, so we shall stick to

deriving solutions using Newtonian dynamics, which is a reasonable approximation

model on the scales involved.

1.1 Newtonian Perturbation Theory

We consider the universe to be an ideal Newtonian fluid, and we study instabilities

in terms of a dimensionless density contrast parameter that describes the deviation

of the density of the fluid at a point relative to the average density of the fluid.

δ(x) =
ρ(x)

ρ̄
− 1 (4)

Considering the fluid to be characterised by its density, pressure, and velocity

field, we can write three equations that govern its motion in the presence of a

gravitational field φ:

Dρ

dt
+ ρ∇r · ~u = 0 (Continuity)

D~u

dt
= −∇rP

ρ
−∇rφ (Euler) (5)

∇2
rφ = 4πGρ (Poisson) (6)
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Where ∇r denotes the gradient operator with respect to r.

Here, D/dt is the convective derivative, which corresponds to:

Df

dt
=
∂f

∂t
+ ~u · ∇f (7)

To study the evolution of perturbations, we decompose the quantities governing

the above equations into a homogeneous background part, plus a small perturba-

tion, and then expand the equations, dropping terms after the first order of small

perturbations. Thus u becomes u+ v, φ becomes φ+ δφ and ρ becomes ρ+ δρ.

In an expanding universe, physical coordinates are related to comoving coordi-

nates by the scale factor:

~r(t) = a(t) · ~x (8)

~u(t) =
ȧ

a
~x+ a(t)

d~x

dt
(9)

Where the peculiar velocity field is defined as:

~v = a(t)
d~x

dt
(10)

If we write the fluid equations in terms of perturbed quantities and change

derivatives with respect to r to derivatives with respect to the comoving coordinates

x, we get:

δ̇ =
1

a
∇ · [(1 + δ)~v] (11)

~̇v +
ȧ

a
~v +

1

a
(~v · ∇)~v = −1

a
~∇δφ−

~∇δp
aρ̄(1 + δ)

(12)

∇2δφ = 4πGρ̄a2δ (13)

For the purposes of our discussion, we will consider only the evolution of adi-

abatic initial perturbations in cold dark matter. This is the component which in-
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fluences structure formation the most. An essential property of cold dark matter is

that it is pressureless, which we will use in our subsequent derivation. Cold dark

matter also has no interaction with baryonic matter, and we can neglect the density

perturbations of baryons while considering the perturbed Poisson equation. Bary-

onic matter forms a small fraction of total matter, but for our case, assuming dark

matter to be the major component is a good approximation. Our set of equations

then becomes, ignoring second-order terms:

δ̇ +
1

a
~∇ · ~v = 0 (14)

~̇v +
ȧ

a
~v = −1

a
~∇δφ (15)

∇2δφ = 4πGρ̄a2δ (16)

Eliminating the velocity field term, and combining the equations, we get the

dynamical equation for the evolution for dark matter perturbations:

δ̈ + 2
ȧ

a
δ̇ = 4πGρ̄δ (17)

It is rather instructive to look at this equation qualitatively. It resembles the

equation for a damped harmonic oscillator, with the Hubble Parameter acting as a

sort of a damping term. Thus, the expansion of the universe damps the clumping of

dark matter. Also, we can see how the time rate of growth of the perturbations is

directly proportional to the instantaneous value of the perturbation, showing how

dark matter aids its own collapse.

Considering a matter dominated universe, we can solve the Friedmann Equations

for background cosmology, and write:

a = a0

(
t

t0

) 2
3

(18)

H(t) =
2

3t
(19)
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H2(t) =
8πGρ̄

3
=

4

9t2
(20)

Substituting these expressions in the governing equation for density perturba-

tions, we get a second-order differential equation:

δ̈ +
4

3t
δ̇ =

2

3t2
δ (21)

Assuming we have a simple pair of power-law solutions to this equation, and

putting in δ = tγ into the equation, we get a characteristic quadratic equation

with roots γ1 = 2/3 and γ2 = −1. γ1 describes the growing mode solution and γ2

describes the decaying mode. The decaying mode falls off, and is usually considered

to be negligible. The growing mode grows proportional to t2/3 and is denoted

D+(t). In a matter dominated universe, this is equivalent to growing proportional

to a. Thus, we can write the evolution of perturbations as:

δ(x, t) = f(x)D+(t) (22)

Here, D+(t) is called the growth factor. It encodes the complete time evolution

of the perturbation. The factor f(x) encodes the spatial properties of the field of

the initial density perturbations. This equation tells us that an initial configuration

of overdensities in space grows in time. The next section covers the spatial field of

overdensities in more detail.

Thus, in this introductory section, we have seen how from the relations govern-

ing a Newtonian fluid, we can derive the equations for the growth of small initial

overdensities that are supposed to give rise to structures through the processes of

gravitational collapse. The overdensities are seen to collapse under the influence of

their own gravity, and then create gravitational potential wells to catch baryonic

matter and aid the formation of visible structures. Thus, in a way, dark matter

forms the canvas on which the visible universe is painted!

1.2 Relativistic Perturbation Theory

For a full relativistic treatment of cosmological perturbations, we need to look at

the Robertson-Walker metric that describes the homogeneous universe, and induce
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metric perturbations that are sourced by disturbances in the energy density and

pressure of matter in the universe.

The perturbed metric is

gµν = ḡµν + δgµν (23)

Where ḡµν is the unperturbed background metric.

The Einstein equation relates the perturbations in the metric (spacetime) to the

perturbations in the source (stress-energy tensor).

We perform a coordinate transformation and work in the conformal metric in

which the spacetime is flat:

ds2 = a2(τ)[dτ2 − δijdxidxj ] (24)

By convention, we induce perturbations in all three kinds of quantities: the 00

element of the metric has the perturbation in the energy density, the 0i and i0

perturbations are separate and vectorial in nature, and the space-space component

gets a metric perturbation.

ds2 = a2(τ)[(1 + 2A)dτ2 − 2Bidx
idτ − (δij + hij)dx

idxj ] (25)

We notice three perturbative quantities: a scalar A, a vector Bi, and a 2-rank

tensor hij . We will further split them into decoupled scalar, vector and tensor modes

for reasons that will be explained shortly.

We expand the vector perturbation as the sum of a curl-less and divergence-less

part:

Bi = ∂iB + B̂i (26)

Similarly, the tensor perturbation is expanded as the sum of a scalar trace, a

vector, and a transverse-traceless tensor:

hij = 2Cδij +
(
∂i∂j −

1

3
δij∇2

)
E + ∂iÊj + ∂jÊi + Êij (27)
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We now have decoupled sectors of perturbations:

• Scalars: A,B,C,E

• Vectors (divergence-less): B̂i, Êi

• Tensors (transverse, traceless): Êij

This is called the Helmholtz-Hodge Decomposition, that is done to segre-

gate metric sectors that only excite the corresponding sectors in the perturbation of

the stress-energy tensor δTµν . Up to linear order, the Einstein equations for these

three kinds of perturbations do not mix. So, for instance, the scalar perturbations

combine to perturb only the energy density, and so on.

1.2.1 Gauge Fixing

Perturbations of the metric thus induced are dependent on the choice of coordinates,

or the gauge. To express the perturbed metric, one chooses a specific way to slice

4-dimensional spacetime into hypersurfaces of constant time. A different choice of

the slicing can lead to different definitions of the perturbations, even working to

induce fictitious perturbations that are solely artefacts of the choice of gauge, even

though the background is homogeneous.

One solution to this problem is to study the changes in the perturbations due to

a change of the gauge, and then isolate combinations that are invariant under gauge

transformations. Perturbations can then be expressed in terms of these invariant

Bardeen variables.

Another way is to simply fix the gauge. Consider a general coordinate transfor-

mation,

xµ 7→ x̃µ = xµ + χµ (28)

Where χ0 = M and χi = ∂iN + N̂ i.

The freedom to choose M and N enables us to fix the gauge. For example, in

the Newtonian gauge where B = 0 and E = 0, the full metric is

ds2 = a2(τ)[(1 + 2Ψ)dτ2 − (1− 2Φ)δijdx
idxj ] (29)
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The right hand side of the Einstein equations, the stress-energy tensor, will be

explored in detail in the following sections, as the theory develops.

2 Motivations

Standard cosmological perturbation theory is successful at large scales at linear or-

der. The effective field theory approach provides a way to incorporate the effects of

nonlinearities and also uses the potential and the peculiar velocities as the pertur-

bative quantities, with no conditions on the matter overdensity.

In the linear regime, the different modes of matter perturbations evolve inde-

pendently of each other. Going up to non-linear order, two short wavelength modes

can combine to create a long wavelength perturbation. Thus, short distance modes

can affect the evolution of long wavelength perturbations. The effective field method

seeks to integrate out the short modes, and describe long-wavelength dynamics with

source terms arising due to short-length modes.

This effective field theory describes all relevant quantities on a macroscopic scale,

while the details of the small-scale physics are averaged away. This is similar to

the the Chiral Lagrangian, which offers an effective theory of pion interactions at

energies lower than the QCD scale.

Conventional perturbation theory is done in terms of the density contrast, which

becomes comparable to unity at small scales, weakening the validity of the pertur-

bative expansion. However, the gravitational potential φ and the velocities v remain

small at short length scales. Thus, the perturbation theory can be arranged in terms

of these quantities, leaving the density contrast unconstrained.

The final theory details the evolution of long-wavelength modes in a Friedmann-

Robertson-Walker universe, affected by an effective fluid that arises from the short

wavelength perturbations. The properties of the effective fluid are encoded in the

effective stress-energy tensor τµν , which shall be derived in the following sections.

The effective fluid is parameterised by numbers which can be extracted from

small-scale N-body simulations, that are computationally cheap. The behaviour of

structure on large scales is then entirely described by the theory, without the need

for large simulations.

10



3 The Effective Stress-Energy

3.1 Newtonian Treatment

Since we are interested in analysing perturbations on very small scales, the universe

can be assumed to be flat, and the Hubble flow can be ignored. This exercise is

thus amenable to a Newtonian treatment. Let us assume the universe is filled with

a pressureless Newtonian fluid. As we assume most of the matter in the universe to

be dark, the assumption that this fluid has zero pressure is a good one. As outlined

in section 1.1, the dynamics of this kind of fluid are governed by the three equations:

the continuity equation, which is essentially the conservation of mass, the Euler

equation, which is the conservation of momentum, and the Poisson equation, which

relates the density of the fluid to the gravitational potential.

ρ̇m +∇ · (ρm~v) = 0 (30)

~̇v + (~v · ∇)~v = −∇Φ (31)

∇2Φ = 4πGρm (32)

First, we naively try to construct a symmetric stress-energy tensor τµν for this

fluid, that will remain conserved under the above equations. We know the expres-

sions for the classical energy and momentum of the fluid:

E =

∫
d3x
[
ρm +

1

2
ρmv

2 +
1

2
ρmΦ

]
≡
∫
d3xτ00 (33)

P i =

∫
d3xρmv

i ≡
∫
d3xτ0i (34)

which give us expressions we can use for τ00 and τ0i.

We will now impose the conservation of stress-energy on this object. First, going

with the i-component of the conservation, we have
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∂ατ
αi = 0 (35)

= ρ̇mv
i + ρmv̇

i + ∂jτ
ji (36)

(37)

Using the continuity and Euler equations, this becomes

− ∂j(ρmvivj)− ρm∂iΦ + ∂jτ
ji = 0 (38)

Given this relation, if we can write ρm∂iΦ as a divergence, we can isolate an

expression for τ ij . For this, we use Poisson’s equation to substitute the expression

for ρm in the second term, which becomes

ρm∂iΦ =
1

4πG
∇2Φ∂iΦ =

1

4πG
∂j

[
∂iΦ∂jΦ−

1

2
δij(∇Φ)2

]
(39)

Using this is equation 38, we can easily write the expression for the stress-energy

tensor:

τ ij = ρmv
ivj +

1

8πG

[
2∂iΦ∂jΦ− δij(∇Φ)2

]
(40)

In the next section, the expressions for the stress-energy tensor are derived more

formally using a full relativistic treatment that accounts for second-order nonlinear-

ities and shows more clearly how nonlinear terms gives rise to the effective stress-

energy.

3.2 Relativistic Calculation

3.2.1 Metric Perturbations

To begin the derivation of the effective stress-energy, we decompose the full Einstein

equation, including non-linear contributions, into three parts:

Ḡµν + (Gµν)L + (Gµν)NL = 8πGTµν (41)
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The equations for the background quantities and the linear parts are straight-

forward. Now, the non-linear part is redefined in terms of the linear part:

(Gµν)L = 8πG(τµν − Tµν) (42)

Where the effective stress energy tensor τµν is defined as

τµν = Tµν − (Gµν)NL/8πG (43)

To start, we consider the perturbed FRW metric in the Poisson gauge

ds2 = a2(τ)
[
− e2ψdτ2 + 2ωidx

idτ + (e−2φδij + χij)dx
idxj

]
(44)

Where ω is a divergence-free vector, and χ is a transverse, traceless tensor.

For the purposes of cosmology, the first order vector and tensor perturbations

are ignored, and all perturbations are broken into first and second order portions.

Let us express the left-hand side of the Einstein equation for this metric first, before

moving on to the details of the perturbation theory itself.

In this report, H is the conformal Hubble parameter, defined as

H =
1

a

da

dτ
(45)

The Christoffel symbols are:

Γ0
00 = H+ ψ̇ (46)

Γ0
0i = ψ,i +Hωi (47)

Γi00 = e2ψ+2φψ,i + ω̇,i +Hωi (48)

Γ0
ij = e−2ψ−2φ(H− φ̇)δij +

1

2
χ̇ij +Hχij −

1

2
(ωi, j + ωj,i) (49)

Γi0j = (H− φ̇)δij +
1

2
χ̇ij −

1

2
(ωi, j − ωj,i) (50)

Γijk = −φ,kδij − φ,jδik + φ,iδjk −Hωiδjk +
1

2

[
χij,k + χik,j − χjk,i

]
(51)
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From these, we compute the Einstein tensor up to second order:

G0
0 = −e

−2ψ

a2

[
3H2 − 6Hφ̇+ 3φ̇2 − e2ψ+2φ(φ2

,i − 2φ,kk)

]
(52)

Gi0 = 2
e2φ

a2

[
φ̇,i + (H− φ̇)ψ,i

]
− 1

2a2
ωi,kk − 2(H2 − Ḣ)

ωi

a2
(53)

Gij =
1

a2

[
e−2ψ

(
− (H2 + 2Ḣ)− 2φ̇ψ̇ − 3φ̇2 + 2H(2φ̇+ ψ̇) + 2φ̈

)
+ e2φ(ψ,kψ,k + ψ,kk − φ,kk)

]

+
e2φ

a2
(φ,ij − ψ,ij + φ,iφ,j − ψ,iψ,j − ψ,iφ,j − φ,iψ,j)

− 1

2a2

[
(ω̇i,j + ω̇j,i) + 2H(ωi,j + ωj,i)

]
+

1

2a2

[
χ̈ij + 2Hχ̇ij − χij,kk

]
(54)

Now, as in our case there is no anisotropic stress (at this level), so φ = ψ.

Perturbations in this spacetime are generated by matter perturbations, in the

density δρ, in the pressure δp, and the peculiar velocities vi. Standard perturbation

theory fails when the magnitude of the density contrast δρ becomes of the order

of the background matter density. However, the magnitudes of the potential φ

and the velocities vi remain small even when the density contrast grows to order

one. This makes these quantities efficient as the variables of a perturbation theory.

The density contrast can grow to unrestricted values, with only the magnitudes of

potential and velocity curtailed to much less than unity. One important result of

this change, is that v2 terms are now first order quantities. Notice that v2 is of the

same order as δφ (because they are of the order of energy). Now, if δ is a zeroth

order quantity, then δφ remains first order, and so does v2.

Also, the Poisson equation for the perturbed potential and density contrast in

an expanding universe is

∇2φ =
3

2
H2δ (55)
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From here, we can establish a relation between the order of magnitude of the

following four kinds of terms

(∇φ)2

H2
∼ φ∇2φ

H2
∼ δφ ∼ v2 (56)

The scheme of expansion in matter perturbations and metric perturbations is

also dependent on the gauge. In our current scenario, the gauge corresponds to

density fluctuations being large, and metric perturbations being small. Were we

to pick a gauge where the density perturbations vanish, the metric perturbations

would be large, disabling the perturbative expansion. In principle, such an expansion

scheme is valid for all gauges where metric perturbations are very small compared

to matter perturbations.

The objective of rearranging the Einstein equation thus is to express the non-

linear part of the Einstein tensor as a linear equation. Now, from the expressions

for the Einstein tensor (52,53,54), we can isolate the parts order-by-order.

The background terms are

−a2Ḡ0
0 = 3H2 (57)

Ḡi0 = 0 (58)

−a2Ḡij = H2 + 2Ḣ (59)

The linear part of the Einstein tensor is

− a2

2
(G0

0)L = ∇2φ− 3H(φ̇+ ψ) (60)

a2

2
(Gi0)L = [φ̇+Hψ],i +

1

4
∇2ωi + (H2 − Ḣ)ωi (61)

a2

2
(Gij)

L =
[
(H2 + 2Ḣψ +H(2φ̇+ ψ̇ + φ̈− 1

2
∇2(φ− ψ)

]
δij +

1

2
[φ− ψ],ij

− 1

4

[
(ω̇i,j + ω̇j,i) + 2H(ωi,j + ωj,i)

]
+

1

4

[
χ̈ij + 2Hχ̇ij − χij,kk

]
(62)
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And the nonlinear (second-order) parts are

− a2(G0
0)NL = 12H2ψ2 + 12Hφ̇ψ + 3φ̇2 − φ,kφ,k + 4φφ,kk (63)

a2

2
(Gi0)NL = 2φ[φ̇+Hψ],i − φ̇ψ,i (64)

a2(Gij)
NL =

[
− 4(H2 + 2Ḣ)ψ2 − 2ψ̇φ̇− 3φ̇2 − 4H(2φ̇+ ψ̇)ψ − 4ψφ̈

+ ψ,kψ,k − 2φ[φ− ψ],kk

]
δij

+ 2φ[φ− ψ],ij + φ,iφ,j − ψ,iψ,j − ψ,iφ,j − φ,iψ,j (65)

Remember, with no anisotropic stress, we have φ = ψ.

3.2.2 Matter Perturbations

The definition of the effective stress-energy also includes contributions from the

matter stress-energy tensor.

We first introduce a timelike velocity 4-vector for an observer comoving with the

fluid:

uµ =
dxµ

dτ
(66)

Where τ is the proper time in the fluid’s rest frame.

Now, for an ideal pressureless fluid like dark matter, the stress energy tensor

takes the form

Tµν = ρuµuν (67)

We have organised our perturbation theory in terms of the three-velocities of the

fluid, v. In order to relate these to the 4-velocity in the fluid’s rest frame, we use

ds2 = dτ2 = gµνdx
µdxν = gµνv

µvνdt2 (68)
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Hence, dτ
dt can be found, which allows us to relate the three-velocities to the

four-velocity. We find the following relations:

u0 = a−1e−ψγ(v) (69)

ui = a−1eφvi (70)

Where γ denotes the usual Lorentz factor

γ(v) =
1√

1− v2
≈ 1 +

v2

2
(71)

Armed thus, we can now reformulate the expressions for the stress-energy tensor

in terms of the local three-velocities.

T 0
0 = −γ2ρ = −ρ(1 + v2) (72)

T i0 = −eφ+ψρvi (73)

T ij = ρvivj (74)

3.2.3 The Relativistic Effective Stress-Energy

Having obtained the expressions for (Gµν)NL already, we can now construct the

effective stress-energy tensor through its definition (43).

τ0
0 = −ρ(1 + vkvk)−

φ,kφ,k − 4φφ,kk
8πGa2

(75)

τ ij = ρvkvk −
φ,kφ,kδ

i
j − 2φ,iφ,j

8πGa2
(76)

Where ψ = φ.
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4 Smoothing the equations

The ultimate aim of this exercise is to construct a theory for the long-wavelength

perturbations of matter. This will be accomplished in this section, by filtering out

the short-wavelength modes using a window with a characteristic length scale Λ.

This process is equivalent to smoothing the equations of motion over domains of

size Λ−1, which retains the long-wavelength parts of any variable.

The smoothing of any quantity will be done by taking a convolution product of

it with a Gaussian filter of width Λ, WΛ. If Q denotes a perturbation variable, then

the long-wavelength part of it is defined as

Ql = [Q]Λ =

∫
WΛ(x− y)Q(y)d3y (77)

The total quantity is

Q = Ql +Qs (78)

Using this method, we now look at the linearised Einstein equation (42).

∫
WΛ(x− y)GLµν(y)d3y =

∫
WΛ(x− y)(τµν(y)− T̄µν)d3y (79)

= [τµν ]Λ − T̄µν (80)

The left side is linear in fluctuations. On the right side, the quantity [τµν ]Λ can

be shown to have the general form

[τµν ]Λ = [τµν ]l + [τµν ]s + [τµν ]∂2 (81)

Here, the portion with the l subscript depends only on the long wavelength

quantities, the one with s depends only on the short wavelength quantities, and the

third one contains higher order derivative terms, which are usually small and can

be neglected. A full proof of this segmentation, and the expressions for the portion

of the effective stress-energy tensor influenced only by the short modes is given on

page 21 of [1].
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Now, we can move [τµν ]l to the left side of the equation 79, so that the right side

contains only functions of short modes. Effectively, the long-wavelength dynamics

are shown to be sourced by short-wavelength terms.

The equations relate the density and velocities of a fluid in terms of long-

wavelength smoothed quantities, with only short-wavelength sources. Long modes

evolve in the presence of an effective fluid constructed by the short modes.

Since we will be satisfied with the Newtonian treatment of the fluid variables,

we must look at the smoothed Newtonian fluid equations, which correspond to the

equations 30. Appendix A of [1] gives a detailed derivation of this form. The

continuity equation is linear in the perturbative quantities and simple to smooth.

We will state it later. Here, we simply state the result of smoothing the Euler

equation here, which is the most important, as it includes contributions from te

effective stress-energy.

ρl

[
v̇il + vjl∇jv

i
l

]
ρl∇iΦl = −∇j [τ ji ]s (82)

Where

[τ ij ]s = [ρmv
i
sv
j
s]Λ +

1

8πG

[
2∂iΦs∂jΦs − δij(∇Φs)

2
]

Λ
(83)

These derivations are done for a flat universe, but this can easily be extended

to working in comoving coordinates in an expanding universe by adding factors of

a and ȧ to space and time derivatives. This shall be used in section 5, where the

continuity, Euler and Poisson equations will be restated and smoothed similarly for

the case of comoving coordinates.

Aside: The Effective Fluid

Equations 75 and 76 describe the content of the effective fluid that is generated

by small-scale fluctuations. This acts as an effective background in which long-

wavelength modes evolve. To extricate the physical meaning of this effective fluid,

we can visualise it as a fluid with some effective density, pressure and anisotropic

stress. To this end, we define the quantities
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ρeff = 〈τ0
0 〉, 3peff = 〈τ ii 〉, Σeff = 〈τ̂ ij〉 (84)

Where τ̂ ij denotes the traceless part of the tensor.

To ease the expression of these definitions, we define symbols for two correlation

functions of the quantities of interest.

κij =
1

2
〈(1 + δ)vivj〉 (85)

ωij =
〈φ,iφ,j〉
8πGa2ρ̄

≈ 〈φφ,ij〉
8πGa2ρ̄

(86)

and their traces

κ = κii =
1

2
〈(1 + δ)v2〉 (87)

ω = ωii =
〈δφ〉

2
(88)

These definitions can be seen as the kinetic and potential energies of the fluid

at the scale corresponding to Λ.

Using these definitions and the expressions 75 and 76, we can easily write down

ρeff = 〈τ0
0 〉 = −ρ̄(1 + 2κ− 5ω) (89)

〈τ ij〉 = −ρ̄(2κij + wδij − 2ωij) (90)

From 90, we can clearly see that the effective pressure 3peff = 〈τ ii 〉 = −ρ̄(2κ+ω).

From this, we can see an enlightening and important result: virialised scales act like

a pressureless fluid. Virialized objects are characterized by the the virial relation

between the kinetic and potential energies

2K +W = 0 (91)
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which is the same as the effective pressure being zero, as shown in the expression

90.

5 The Effective Theory

To construct the equations of motion, we can go back to the fluid equations and

write them down only for the long wavelength quantities. We drop the subscript l for

convenience. Since nonlinear effects are expected to be relevant only at short scales,

we can use the Newtonian approximation of the full general relativistic equations

while looking at the evolution.

To do this, we have to go back and first look at the continuity (11) and Euler

(12) equations for the dark matter fluid in an expanding universe. We must apply

the smoothing process described in section 4 to these. The continuity equation

smoothing is simple and yields

ρ̇+ 3Hρ+
∂i(ρv

i)

a
= 0 (92)

The Euler equation smoothing is done as in equation 82, and yields

v̇i +Hvi +
vj∂jv

i

a
+
∂iφ

a
= − 1

aρ
= ∂j [τij ]s (93)

The source term [τij ]s now includes short wavelength modes and the higher

derivative terms [τij ]∂2 after the smoothing procedure is applied on the effective

stress energy tensor and the result is broken as in 81. Now, since in our theory,

the short modes are not observed explicitly, an average over those will be taken.

This means that the source term now depends in some unknown way on the long

modes and their derivatives only, but we are ignorant about the exact nature of

this functional dependence. To get around this, we must remember that the long

wavelength perturbations are all small in magnitude, and thus we can expand the

source term in terms of the long wavelength quantities and their derivatives.

The expansion of the source term (averaged over the short modes) in terms of

the long wavelength density contrast and velocity is, upto first order
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〈[τij ]s〉 = ρ̄
[
c2
sδδ

ij −
c2
bv

Ha
δij∂kv

k − 3

4

c2
sv

Ha

(
∂jv

i + ∂iv
j − 2

3
δij∂kv

k
)

+ ...
]

(94)

Here, the various velocity terms of the form c2
i are parameters that characterise

the effective field theory. They can be extracted from relatively small-scale N-

body simulations, and [2] defines clearly a set of two-point correlation functions

that can be computed from an N-body simulation output, that are related to these

parameters.

This effective stress-energy that arises from non-linear fluctuations is equivalent

to an anistropic stress. The velocity terms signify the following, physically:

• c2
s represents the pressure induced by the small scales, where c2

s is the com-

monly known sound speed in cosmology, such that any pressure perturbations

δp = c2
sδ.

• c2
sv represents the effect of the shear viscosity of the fluid, such that the shear

η = 3ρ̄c2
sv/4H.

• c2
bv represents the effect of the bulk viscosity of the fluid, such that the bulk

viscosity ζ = ρ̄c2
bv/H.

Substituting this expression into 93 and expressing ρ = ρ̄(1 + δ), we get the

following set of equations:

δ̇ = −1

a
∂i

(
(1 + δ)vi

)
(95)

v̇i +Hvi +
1

a
vj∂jv

i +
1

a
∂iφ = −1

a
c2
s∂

iδ +
4c2
bv + c2

sv

4Ha2
∂i∂jv

j +
3

4

c2
sv

Ha2
(96)

This is supported by the Poisson equation relating the perturbed density and

potential

∇2φ =
3

2
a2H2δ (97)
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To solve these equations, we shall move to Fourier space, since our ultimate ob-

jective is to calculate the matter power spectrum in Fourier space. The organisation

of the solutions will be such that the corrections to the power spectrum will be

expressed in terms of the power spectrum of the first order matter perturbations.

We will use the velocity divergence θ = ∂iv
i to write down our equations. Using

that, in Fourier space, the equations 95 and (the derivative of) 96 become

aHδ′ + θ = −
∫

d3q

(2π)3
α(~q,~k − ~q)δ(~k − ~q)θ(~q) (98)

aHθ′ +Hθ +
3

2
H2δ − c2

sk
2δ +

c2
vk

2

H
θ = −

∫
d3q

(2π)3
β(~q,~k − ~q)θ(~k − ~q)θ(~q) (99)

Where H = aH is the conformal Hubble parameter, and the prime denotes ∂/∂a.

The Poisson equation has been used to replace a double derivative of the density

contrast. The right hand expressions come from the conversion of the equations to

Fourier space, and are given by

α(~k, ~q) =
(~k + ~q) · ~k

k2
, β(~k, ~q) =

(~k + ~q)2~k · ~q
2q2k2

(100)

Our strategy will be to first ignore all source terms of the right hand sides of these

equations, and also ignore all terms that come from the effective stress energy tensor,

since they involve second derivatives (a factor of k2) and thus become effectively

third order terms. Ignoring all these, we have first order equations. We will use the

two equations to eliminate θ and obtain a second order equation in the variable δ.

Now, we seek to find the Green’s function for this equation. This will allow

us to reconstruct the full solutions from the source terms we earlier ignored. If the

Green’s function is G(a, b), then the combined second order equation for the Green’s

function with a delta-function source term becomes

− a2H2(a)∂2
aG(a, b)− a(2H2(a) + aH(a)H′(a))∂aG(a, b) +

3

2
H2G(a, b) = δ(a− b)

(101)
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This equation is to be solved by assuming the homogeneous equation, finding so-

lutions to that, and then patching the solutions using the conditions at the boundary

a = b

G(a, b)|a=b = 0 ,
∂

∂a
G(a, b)|a=b = 1/(b2H2(b)) (102)

Moreover, for the we seek to find the retarded Green’s function, so G(a, b) = 0

for a < b.

For a simple Einstein-de Sitter universe with only dark matter, we can obtain so-

lutions analytically, with the Green’s function being a sum of solutions proportional

to a−1 and a4, but it is advisable to solve for this Green’s function numerically.

Once it is known, the corrections to the perturbative solutions can be written down.

Now, to write down the full solutions, we will write the solutions for the homo-

geneous equation for the first order density perturbations as

δ(k, a) =
D(a)

D(a0)
δs(k) (103)

Where a0 refers to the scale factor at the current time and is normalised as

a0 = 1, and δs(k) is the first order density perturbation at current time.

We define the power spectrum P11(k) of first order density perturbations at

current time as:

〈δs(~k)δs(~q)〉 = (2π)3δ(3)(~k + ~q)P11(k) (104)

Now, from this the smoothed power spectrum at current time is easy to write in

Fourier space: it picks up one factor of the smoothing function for each δs.

P11,l(k) = W 2
Λ(k)P11(k) (105)

Now, to facilitate a perturbation theory-like solution to these equations and

restate the solution in terms of thee two-point correlation function (or the power

spectrum) as outlined above, we need to take the two-point correlations of the full

perturbative expansion. We write δ as a power series in the small parameter ε,
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δ =
∑
i=1

εiδ(i) (106)

Then the two-point correlation function becomes, schematically

〈δδ〉 = ε2〈δ(1)δ(1)〉+ ε4[〈δ(1)δ(3)〉+ 〈δ(3)δ(1)〉+ 〈δ(2)δ(2)〉] + ... (107)

Translating this to the expression for the power spectrum, where we define

〈δ(i)(~q)δ(j)(~k)〉 = (2π)3δ(3)(~k + ~q)Pij(k), the full power spectrum, upto order ε4

becomes the sum

P (k) = P11(k) + 2P13(k) + P22(k) (108)

Armed with this prescription and the Green’s function, we can first write the

second order solutions for δ by multiplying the Green’s function with the source

terms we had ignored earlier, ignoring the effective stress energy tensor terms (since

they are third order). Higher order terms can be written as integrals using the

Green’s functions perturbatively. For instance, at second order, we have

δ(2)(~k, a) =
1

16π3D2(a0)

[(∫ a

0
dbG(a, b)b2H2(b)D′2(b)

)(
2

∫
d3qβ(~q,~k−~q)δs(~k−~q)δs(~q)

)

+

(∫ a

0
dbG(a, b)

(
2b2H2(b)D′2(b) + 3H2

0Ωm
D2(b)

b

))

×

(∫
d3qα(~q,~k − ~q)δs(~k − ~q)δs(~q)

)]
(109)

This corresponds to a perturbative solution for the δ, as is common in field

theory.

Finally, we can also treat the terms coming from the effective stress energy tensor

as a third order source, and write down the solution due to those using the Green’s

function. First, note that the expression for θ(1)(~k, a) can be extracted from the

solution to δ(1)(~k, a) using the continuity equation in Fourier space (98) at first

order:
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θ(1)(~k, a) = −aH∂aδ(1)(~k, a) = −aHD
′(a)

D(a)
δ(1)(~k, a) (110)

Now, the source term arising from the effective stress energy is k2c2
sδ−H−1k2c2

vθ,

we can use the above expression to write the source only in terms of δ,

j(~k, a) = k2
[
c2
s + a

D′(a)

D(a)
c2
v

]
δ(~k, a) (111)

Then, then the third order solution due to this effective stress energy can be

computed simply using the Green’s function as

δ
(3)
j (~k, a) = − k2

D(a0)

∫ a

0
dbG(a, b)

[
c2
s + a

D′(a)

D(a)
c2
v

]
D(b)δs(~k) (112)

Now, since our power spectrum is up to fourth order in the perturbed δ, another

fourth order term gets added to it through the coupling of δ(1) and δ
(3)
j , and gets

added to the expression for the total power spectrum. This new term is defined in

a similar way to the others:

〈δ(1)(~q)δ
(3)
j (~k)〉 = (2π)3δ(3)(~k + ~q)P13j(k) (113)

Since the higher order solutions are written in terms of δ(1), the higher order

power spectra can be isolated in terms of the first order power spectrum. We use

Wick’s theorem to compute the correlation function of the first order solutions that

get isolated, which are treated as free fields.

Taking these Wick contractions, we can express the two-point correlation func-

tions in terms of the first order solutions. Now, the first order solutions can also

be expressed in terms of the current density contrast, using a multiplicative growth

factor. Thus finally, the power spectrum corrections can be written in terms of the

current time power spectrum.

Using this, one can generate corrections to the large-scale power spectrum due to

small-scale structures numerically, without having to resort to large simulations. The

current time power spectrum can be generated using common software like CAMB

and then used as input to the expressions for the corrections. One only needs to run

small, inexpensive simulations to generate the parameters that define the effective
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theory, and then the correct power spectra at large scales can be calculated.

The following are the expressions for the three corrective terms to the power

spectrum at current time.

P22(k, a0) =
k3

16π2D4(a0)

∫
dqd(cos θ)

1

(k2 − 2 cos θkq + q2)2
P11,l(q)P11,l(|~k − ~q|)[( ∫ a0

0
dbb2G(a0, b)H2(b)D′2(b)

)
4 cos θ(k − q cos θ)

+ 3H2
0Ωm

(∫ a0

0
dbG(a0, b)

D2(b)

b

)
(cos θ(k − 2q cos θ) + q)

]
×[( ∫ a0

0
dbb2G(a0, b)H2(b)D′2(b)

)
(3k2 cos θ − kq(4 cos2 θ + 1) + 2q2 cos θ)

+ 3H2
0Ωm

(∫ a0

0
dbG(a0, b)

D2(b)

b

)
(k2 − 2kq cos θ + q2)

]
(114)

Where cos θ = k̂ · q̂.

P13(k, a0) = − 2k3

96(2π)2D3(a0)
P11,l(k)∫ ∞

0

dr

r3

[
12r7D4 − 24rD5 + 4r3(16D1 + 8D2 + 4D3 − 3D4 + 24D5)

+ 8r5(4D2 + 2D3 − 6D4 + 3D5 − 4D6)

+ 6(r2 − 1)3(r2D4 + 2D5) log
(1− r

1 + r

)]
P11,l(kr) (115)

Where the expressions for D1···6 are supplied in Appendix B of [2].

P13j(k, a0) = −2
k2

D(a0)

∫ a0

0
dbG(a0, b)

[
c2
s + a

D′(a)

D(a)
c2
v

]
D(b)P11,l(k) (116)

6 Future Work and Summary

Currently, we are in the process of writing numerical codes to solve the second-order

differential equation for the Green’s function that propagates the solution δ(k) for
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any general case.

The user should be able to input the background cosmology by specifying the

exact functional form of the Hubble parameter in terms of the scale factor a. The

code then assumes a growth factor D(a) ∝ a, which is hardwired into it to mimic

a matter-dominated universe. This can be changed to any other form in the code.

Using these two ingredients, and the background cosmological parameters, the code

then solves for the Green’s function that satisfies equation 101.

The code sets up a two dimensional grid using axes in a and b on which the

Green’s function G(a, b) is constructed. For each value of b, the differential equation

is solved for all a using an ODE solver in-built into the scipy package of the Python

language. The boundary conditions given by (102) are then matched to the array

of solutions for each b. This strategy is adopted because at each b, a different set of

boundary conditions are imposed.

This set of solutions for different values b, constructed using the boundary con-

ditions, is then stacked in a two dimensional array. Since this is a retarded Green’s

function, the below-diagonal terms of the array are all set to zero by hand, before

the stacking is done. So, for each b, the solutions array starts from a = b and goes

up to a = 1, which denotes the current time. An array of zero values is stacked to

the left of this array of solutions and then this becomes the complete solution for

all a, where the value is G = 0 for a < b.

The structure of the numerical array is shown in figure 1. A similar array is

constructed for the function ∂aG(a, b).

This stacking with zeros also gives the array a form which naturally imposes

limits on the source term. The power spectrum corrections (114 - 116) include

various time integrals of the form

∫ a

0
G(a, b)S(b)db (117)

Where S(b) is a source. The structure of the arrays ensure that a numerical

integration that goes vertically (i.e. integration over the variable b) naturally has

zero values after the point b = a for each value of a. This is in keeping with the

structure of a retarded Green’s function, and the limit that the source has to be

active before the current time of the impact of the source, is automatically imposed.
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Figure 1: The structure of the Green’s Function array.

Using these arrays and the expressions for D(a) and H(a), we can compute all

the integrals that constitute the expressions for the correction to the power spectra

(114 - 116). We are in the process of writing codes for all the power spectrum

corrections. The final power spectrum is

P (k) = P11(k) + P22(k) + P31(k) + P13j(k) (118)

The advantage of this approach is that all the corrections are expressed directly

in terms of the linear theory matter power spectrum, which can be easily computed

using fitting functions for a wide variety of cosmological models, and also by using

publicly available codes. For this project, we seek to use the public code CAMB

(Code for Anisotropies in the Microwave Background) to produce the linear power

spectrum, and integrate its usage into our own code.

Then, given the input of the various fluid parameters, the background cosmol-

ogy, and the linear power spectrum, the user can calculate, through this code all

corrections arising in the power spectrum due to small-scale inhomogeneities.

A possible extension is to run small N-body simulations to extract the fluid

parameters as one wishes, and then use this code to compute corrections in the

power spectrum.
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Summary The effective field theory approach, when applied to large-scale cos-

mological structures, yields a simple yet powerful tool to quantify structures on the

largest scales while also accounting for the changes in structure formation due to

small-scale inhomogeneities. It uses a perturbative approach to build higher order

solutions based on an effective fluid generated by small wavelength matter density

fluctuations, and parameterized by a small set of numbers which can be easily com-

puted from inexpensive N-body simulations, or using existing simulation data. Our

code can then be used to precisely and quickly calculate all corrections to the power

spectrum given any cosmological model. This is effective in analytically describing

large-scale structure without resorting to simulations of large size and fine resolution,

both of which demand computational resources.
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