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Fields are ubiquitous in modern physics. From classical gravitation and electromagnetism to
inflationary expansion in the early universe, they explain a wide range of phenomena. In this
pedagogical introduction, we cover the motivations behind the introduction of classical fields, going
from discrete systems to continuous ones, and then derive the Lagrangian equations of motion for a
field, finally deriving the generalised Noether’s theorem. Finally, we use Noether’s theorem to see
the significance of the energy-momentum tensor of a field.

1. MOTIVATIONS AND DEFINITIONS

Although technically, Newton’s Law of Gravitation,
which ascribes an expression for the strength of the at-
tractive force between masses at each point is a field the-
ory, the term itself was first used by Michael Faraday in
1849, and the early workers of electrodynamics first found
it convenient to describe the interactions of charges and
currents through the field picture.

With Maxwell’s discovery that light propagates at a
finite speed, and the setting up of source-effect equations
for electric and magnetic fields like the one Newton had
formulated for gravity, the field notion gained credence,
to explain this ’action at a distance’, the effects of sources
on objects not in contact. A source would set up a region
of influence around it, which acted on all other elements
present in this field.

Apart from explaining the ’action of matter where it is
not’, the idea of a field helps extend mechanics to a wider
range of systems. In preliminary treatments of classical
mechanics, the Lagrangian and Hamiltonian formalisms
are used to describe the motion of a finite, countable
number of freedoms, which can easily be used to cover
systems with countable, infinite degrees of freedom. The
picture of a field covers systems which are continuous and
infinite.

A classical field, then, is a quantity φ(x, t) given to
each point in space at a point in time. If the coordinates
of an object are represented at qi(t) in the case of dis-
crete systems, φ(x, t) replaces q and x is the continuous
’label’ which replaces the subscript i. Common examples
of classical fields include the the electric, magnetic and
gravitational fields.

2. FROM CHAIN TO STRING

The simplest illustrative example of a field is the pic-
ture of a string, which can be visualised as a chain of
oscillators, that tends towards a continuous system in
the limit of very small distances between each oscillating
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unit.
We consider a system made up of N particles, each of

mass m, each connected to the next by a massless spring
of spring constant k. The position of each particle is
denoted by qi, and the particles can only move along the
length of this chain-like system.

We will first use the Langrangian picture to study this
arrangement, as the motions of a particle on a spring is
conveniently described by the same. Also, in further ex-
tensions to quantum field theory, the Lagrangian density
is a centrally important entity constructed from the most
general symmetries of the system.

Coming back to our picture of the long chain of masses,
the total kinetic energy can be written as:

T =

N∑
i

1

2
mq̇2i (1)

And the total potential energy is:

V =

N∑
i

1

2
k(qi+1 − qi)2 (2)

So the Lagrangian, as usual, becomes

L = T − V =

N∑
i

1

2
mq̇2i −

1

2
k(qi+1 − qi)2 (3)

From this, the equation of motion for the particle qi
becomes:

mq̈i = k(qi+1 − qi)− k(qi − qi−1) (4)

We can rewrite (4) (where l is the natural length of
each spring):

m

l
q̈i =

kl(qi+1 − qi)
l2

− kl(qi − qi−1)

l2
(5)

Now, taking N → ∞ so that a → 0 and m → 0, so
that the chain tends towards a continuous system, we see
the expression m/l reduces to the mass per unit length ,
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denoted by µ, and ka becomes κ, the Young’s Modulus
of the chain (now string).

Also, in jumping from discrete to continuous notation,
we denote the label of the ith particle by x = il, so that,
in the new notation, qi → φ(x), and the expression of the
difference of two mass points tends to the derivative at
that point:

lim
l→0

kl(qi+1 − qi)
l

= lim
l→0

k[φ((i+ 1)l)− φ(il)]

l
=
∂φ

∂x

The right hand side of (5) can be then written as:

lim
l→0

κ

l

[
∂φ

∂x

∣∣∣∣
x

− ∂φ

∂x

∣∣∣∣
x−l

]
= κ

∂2φ

∂x2

The final expression of (5), in our continuous limit is:

µ
∂2φ

∂t2
= κ

∂2φ

∂x2
(6)

The Lagrangian becomes:

L =

∫
1

2

[
µ

(
∂φ

∂t

)2

− κ
(
∂φ

∂x

)2
]
dx =

∫
Ldx (7)

So that the Lagrangian density is given by:

L =
1

2

[
µ

(
∂φ

∂t

)2

− κ
(
∂φ

∂x

)2
]

(8)

We can see that (6) is the common wave equation,
which we have successfully derived by considering the
chain as a continuous system. This constitutes a rudi-
mentary field theory, specifying the displacement of the
string, φ at each point x along the string, and specifying
its dynamics.

3. THE EULER-LAGRANGE EQUATIONS FOR
A CLASSICAL FIELD

Since we have already seen the utility of the Lagrangian
formulation of mechanics in describing the simplest field,
it is only natural to try and extend the machinery of
the Euler-Lagrange equations to compute field dynamics.
Knowledge of the Lagrangian density of a given field will
then be enough to describe its behaviour at all points
and times.

From here on, we shall use the Einstein summation
convention, where repeated indices are summed over, and
also use ∂µ to mean a derivative with respect to the com-
ponent xµ, where Greek indices go from 0 to 3, denoting
time and three space components.

We will consider the Lagrangian density as a function
of only the field, its first derivatives in space and time,
and possibly time: L = L(φ, ∂µφ, t). It is understood
that any dependence on space coordinates is implicit in
the dependence on the field itself. We consider the action
of the field and perturb it:

S =

∫
d3xdtL (9)

δS =

∫
d3xdt

[
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

]
(10)

Applying integration by parts, we have:

δS =

∫
d3xdt

[
∂L
∂φ

δφ− ∂µ
(

∂L
∂(∂µφ)

)
δφ+ ∂µ

(
∂L

∂(∂µφ)
δφ

)]
Since we are integrating over all space, and we assume

that any real field decays to zero at infinity, the third
term drops to zero on integration. Now, since the vari-
ation of the action under our perturbation is zero, we
impose δS = 0, which means the remaining integrand is
zero. This gives us the Euler-Lagrange Equations for a
field:

∂µ

(
∂L

∂(∂µφ)

)
=
∂L
∂φ

(11)

4. THE HAMILTONIAN PICTURE

The Poisson bracket formalism of classical mechanics
and the canonical quantisation relations of quantum me-
chanics provide a bridge between the two realms, and the
path from classical to quantum field theory goes through
an analogous elevation of the field to an observable, and
the establishment of commutation relations between the
field and a suitably conjugate momentum. It is thus in-
structive to briefly cover the Hamiltonian way of looking
at fields, as an aside.

We define the momentum conjugate to a field as the
derivative of the Lagrangian with respect to the time
derivative of the field:

π =
∂L
∂φ̇

(12)

Like the case with ordinary point particles, we perform
a Legendre transform on the Lagrangian to get to the
Hamiltonian, with the defined conjugate momentum as
the changing variable. Thus, the Hamiltonian becomes:

H = πφ̇− L (13)
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For instance, if the field has the simple Lagrangian
density:

L =
1

2
∂µφ∂µφ− V (φ)

The Hamiltonian becomes:

H = πφ̇− L =
1

2
π2 − 1

2
(∇φ)2 + V (φ) (14)

5. SYMMETRIES AND CONSERVATION

Perhaps the most beautiful theorem in all of mechan-
ics is that named after and proven by Emmy Noether:
every symmetry of the system has associated with it a
conserved quantity. Here, we will consider a general sym-
metry transformation, and derive an expression for a con-
served current, thereby extending Noether’s Theorem to
classical fields.

Let us consider a symmetry transformation, where the
change in the field leaves the motion invariant. The
transformation where φ → φ + δφ and δφ = f(φ). If
this leaves the motion unchanged, we can say that the
field Lagrangian changes by a total derivative:

L → L+ ∂νF
ν

δL = ∂νF
ν

Now, we consider a general perturbation of the La-
grangian under this transformation:

δL =
∂L
∂φ

+
∂L

∂(∂µφ)
δ(∂µφ)

=
∂L
∂φ

δφ− ∂µ
(

∂L
∂(∂µφ)

)
δφ+ ∂µ

(
∂L

∂(∂µφ)
δφ

)
Upon using the Euler-Lagrange Equations (11), the

first two terms cancel out, and we are left with:

δL = ∂µF
µ = ∂µ

(
∂L

∂(∂µφ)
δφ

)
⇒ ∂µ

(
Fµ − ∂L

∂(∂µφ)
δφ

)
= 0

⇒ ∂µ

(
Fµ − ∂L

∂(∂µφ)
f(φ)

)
= 0

We clearly see a conserved quantity associated with
this symmetry. We define it to be the conserved current
Jµ, and thus the conservation expression becomes:

∂µJ
µ = 0 (15)

Jµ =
∂L

∂(∂µφ)
f(φ)− Fµ (16)

Expanding (15) leads to a continuity equation:

∂

∂t
J0 + ∂iJ

i = 0 (17)

Where J0 acts as an effective charge and the three-
vector J i as an effective outgoing current, signifying that
the charge is locally conserved. Upon integrating (17)
over all space, the outgoing current terms drop out to
zero at infinity, and this means:

∂

∂t

∫
d3xJ0 =

∂Q

∂t
= 0 (18)

Which means the charge Q is conserved globally. This
means each conserved current has with it a globally con-
served charge.

6. TRANSLATIONAL SYMMETRY AND
ENERGY-MOMENTUM

To illustrate Noether’s theorem, we will use a simple
symmetry transformation, that of space and time trans-
lation, so that xν → xν + εν . The ν = 0 component
of this transformation leads to time translation, and the
ν = 1, 2, 3 components mean space translation. Now, un-
der our prescribed transformation, we can say that the
field and the Lagrangian transform as:

φ(x) → φ(x) + εν∂νφ (19)

L → L+ εν∂νL (20)

This transformation can be thought of as a combina-
tion of four separate translations, one in each dimension.
Therefore, for each one, we get a four-vector of conserved
current.

For instance, for ν = 0, we have δφ = ∂0(ε0φ). From
(16), we can write (ε cancels out):

(Jµ)0 =
∂L

∂(∂µφ)
∂0φ− δµ0L (21)

Extending this to the other three components, we can
generally write:

(Jµ)ν =
∂L

∂(∂µφ)
∂νφ− δµνL (22)

Looking at the quantity (Jµ)ν , we can see it has 16
components, and thus we denote it in tensor notation:
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Tµν . This tensor has special significance, and we shall
proceed to uncover it thus. In accordance with (18), we
know that for each index ν, there will be a conserved
charge, which will have four components:

Qν =

∫
d3xT 0ν (23)

First, let us look at the case ν = 0. Here, Q0 =∫
d3xT 00 and from (22), T 00 = πφ̇ − L, where π is the

conjugate momentum. We see that

E =

∫
d3x (πφ̇− L)

is conserved. From the definition of the Hamiltonian
density of the field (13), this is just the Hamiltonian,
and the conserved quantity then turns out to be just the
energy of the system. Remember, this calculation was
for the ν = 0, i.e. time component of the transformation.
Thus, we see that the imposition of invariance under time
translation has automatically implied the conservation of
energy!

Similarly, the conservation of charges for the cases
ν = 1, 2, 3 = i, leads to the following quantities being
conserved:

Pi =

∫
d3xπ∂iφ

Pi is just the ith component of total field momentum.
Thus, again, we see how invariance under space transla-
tions leaves the total momentum conserved!

Since the tensor Tµν has led to the physical realisation
of the conservation of momentum and energy, it is called
the energy-momentum tensor.
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