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Abstract

The excursion set theory used by Press and Schechter gives a fitting form

for the mass function of dark matter haloes. This was improved upon by using

an ellipsoidal collapse model by Sheth and Tormen, who provided universal

(independent of cosmology and power spectrum) fitting functions. We aim to

investigate the non-universality of the Sheth-Tormen fitting functions through

a suite of N-body simulations using the Gadget-2 code, specifically the impact

of the power spectrum on the mass function parameters. We study the mass

function with a power law power spectrum in an Einstein-deSitter universe,

which is a scale-free cosmology. Thus, the dependence of fit parameters on

power spectrum can be isolated.
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1 Theory

1.1 Spherical Collapse

The currently accepted mechanism for the formation of haloes is the ”hierarchical”

model, where due to pressureless collapse, haloes form at the smallest scales, and

then merge to form bigger haloes.

To study the formation of dark matter haloes, we use a model called Spherical

Collapse. We assume haloes to be almost spherical overdense dark matter clumps

existing in a pressureless universe of critical density. We begin with a spherical per-

turbation of radius R and initial overdensity δ evolving in this background universe.

We can treat the perturbation as a separate universe expanding in an Einstein-

deSitter background. Such a universe collapses after some time and stays stable

and bound in the absence of pressure.

Let us consider the growth of a sphere under its own gravity. The governing

equation for the motion of its radius will be:

d2r

dt2
= −GM

r2
(1)

Integrating over r once, it becomes:

ṙ2 =
2GM

r
+ C (2)

This differential equation has the following parametric solution:

r = A(1− cos θ) (3)

t = B(θ − sin θ) (4)

A3 = GMB2 (5)

Considering the behaviour of this solution at early times, when θ → 0, and

expanding terms, we have r = Aθ2/2 and t = Bθ3/6. Eliminating θ, we have

8r3/A3 = 36t2/B2, which gives us r3 = (9/2)GMt2. Since r3 = 3M/4πρ, we

have 6πGρ = t−2. Recall here, that in a single-component universe with Ω = 1,
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ρ ∝ t−2. Thus, at early times, our spherical perturbation evolves exactly as a

single-component universe. Also, note here that we can write:

r =
A

2

(
6t

B

)2/3

(6)

Moving to a higher value of time, we can expand the expressions for r and t

further, to get:

r =
Aθ2

2

(
1− θ2

12

)
(7)

t =
Bθ3

6

(
1− θ2

20

)
(8)

Solving for r(t), we have,

r =
A

2

(
6t

B

)2/3[
1∓ 1

20

(
6t

B

)2/3]
(9)

We can see that the first term on the right hand side of (9) is the same as equation

(6). Thus, the first term represents the first-order expansion, and the second term

shows the growth of the density perturbation.

With this done, let us consider the mass of expanding sphere. The initial mass

is M = 4πρr3/3. Let us say the mass is disturbed by an overdensity of magnitude δ.

To conserve mass in the system, the radius must change by the infinitesimal amount

δr. By the conservation of mass, we have,

M =
4π

3
ρr3 =

4π

3
ρr3(1 + δ)(1 + δr)3 (10)

Which becomes

(1 + δ)(1 + δr)3 = 1 (11)

Expanding this and keeping only first-order terms, we get,
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δ ≈ −3δr (12)

Looking at (9), we can expand the right hand side a r0 + δr, and then substitute

it in (12) to get δ as a function of time:

δ = ± 3

20

(
6t

B

)2/3

(13)

Let us now revisit the behavior of the parametric solutions. We can differentiate

r with respect to θ to obtain the parametric points that correspond to extrema of

r. These come out to be θ = 0, π, 2π.

We know, that at θ = 0, the sphere is undergoing Hubble expansion and r = 0.

Post this, at θ = π, there is a turnaround, where the radius is maximum. After this

begins the collapse of the sphere, which terminates at the point θ = 2π.

Using (13) at the parametric points θ = π for turnaround, and θ = 2π for

collapse, we can calculate the linear theory predictions for the overdensities at

turnaround and collapse. For θ = π, we have tturn = πB, and for θ = 2π we

have tcollapse = 2πB.

δturn =
3

20

(
6tturn
B

)2/3

=
3

20
(6π)2/3 = 1.06 (14)

δcollapse =
3

20

(
6tcollapse

B

)2/3

=
3

20
(12π)2/3 = 1.686 (15)

Thus, we can see that when the overdensity predicated by the linear model

approaches the order unity, the collapse of the overdensity begins, and it finally

collapses at a critical value of overdensity which is 1.686.

1.2 The Halo Mass Function

Haloes of dark matter are the basic units of large-scale structure, and a successful

tool for the verification of the theories of structure formation is the halo mass func-

tion, which denotes the spectrum of fully-formed, or virialized halos that form out

of an initial field of overdensities.
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The mass function gives the number density of virialized haloes in the mass

range m and m + dm at some redshift. It can be calculated observationally by

selecting a volume in space and counting the number of objects of a given mass in

that region, and it is now an important tool in various aspects of cosmology and

astrophysics, including normalization of the power spectrum, the characteristics of

the overdensity field, and in galaxy formation, apart from being a verification tool

for theoretical models in cosmology.

1.2.1 Press-Schechter Formalism

Press and Schechter [1] were the first ones to provide a process to obtain the mass

distribution of haloes from an underlying density field. In this section, we will review

their formalism and results, along with certain extensions.

Press and Schechter (PS hereafter) assumed that haloes form at the peaks of the

field of overdensities. They said that if the overdensity field is smoothed on a scale

of the radius which corresponds to a given mass M , haloes form in the portions of

space where the overdensity exceeds the critical overdensity of 1.686 (from (15)).

They say that collapsing perturbations follow linear theory till this critical value,

and suddenly collapse to form haloes. This claim lacks mathematical rigour but

turns out to be a reasonable approximation that works well.

First of all, we look at an equivalent length scale r to a mass m, which is given

by the relation:

m =
4π

3
ρr3 (16)

Then, the variance of the density field corresponding to a mass m is the variance

under a smoothing function of radius r, which is σr, which we shall alternatively

denote by σ(m).

To quantify the smoothing, we multiply the power spectrum by a smoothing

function with a characteristic scale R, denoted by W (kr) and then integrate:

σ2r =

∫
∆2(k)W 2(kr)d ln k (17)

Which we can also write as:
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σ2r =

∫
k3

2π2
P (k)W 2(kr)

dk

k
(18)

The probability distribution of finding a density contrast filtered over this scale

is Gaussian, as the underlying field, and takes the form:

p(δ;m) =
1√

2πσ2(m)
exp

(
− δ2

2σ2(m)

)
(19)

To find the fraction of collapsed mass, as per the theory of PS, we need to

integrate this distribution from the critical value of δcr:

P (> δcr) =

∫ ∞
δcr

P (δ;m)dδ =

∫ ∞
δcr

1√
2πσ2(m)

exp

(
− δ2

2σ2(m)

)
dδ (20)

Which means,

F (> m) =
1

2

[
1− erf

(
− δ√

2σ(m)

)]
(21)

Noting that this is normalised to 1/2, PS realised this meant only half of the uni-

verse was available for collapse, which was due to the Gaussianity of the distribution.

To resolve this, they multiplied this fraction by an ad-hoc factor of 2.

The fraction of collapsed objects in the mass range from m to m + dm is then

given by simply subtracting the fractions at the two points. So,

f(m)dm = F (> m+ dm)− F (> m) (22)

Therefore,

f(M) =

∣∣∣∣F (> m+ dm)− F (> m)

dm

∣∣∣∣ =

∣∣∣∣dF (m)

dm

∣∣∣∣ (23)

To get the number density of objects per unit mass interval, we multiply by the

density and divide by the mass of one object, and we get:

dn(m)

dm
=

ρ

m

∣∣∣∣dF (m)

dm

∣∣∣∣ (24)
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To obtain the functional form, we now decompose the mass derivative operator

as:

d

dm
=
dσ

dm

d

dσ
(25)

We can then write the number of halo objects as:

dn(m)

dm
=

ρ

m

∣∣∣∣dσ(m)

dm

∣∣∣∣
√

2

π

δcr
σ2(m)

exp

(
− δ2cr

2σ2(m)

)
(26)

And the number of haloes with mass greater than m0 as:

N(> m0) =

∫ ∞
m0

dn(m)

dm
dm (27)

In conclusion, we can write a general form for the number of haloes, as:

dn(m)

dm
=

ρ

m

∣∣∣∣d lnσ(m)

dm

∣∣∣∣ f(ν) (28)

Where f(ν) is formally labelled the mass function, and ν = δc/σ(m, z). It is

convenient to specify different models in terms of different fitting forms / expressions

for the mass function.

Comparing directly with (26), we can see that the Press-Schechter model supplies

the mass function

f(ν) =

√
2

π
ν exp(−ν2/2) (29)

1.2.2 Sheth-Tormen Formalism

Using the formalism of Sheth and Tormen [2], we can obtain a fitting form for the

mass function that better matches large-scale simulations.

In their paper, Sheth, Mo and Tormen (SMT hereafter), assert that the collapse

of a halo depends not only on its initial overdensity, but the surrounding shear field

also. Rather than assuming spherical collapse, they work with a tri-axial ellipsoidal

collapse model, where it is assumed that the final collapse happens when the third

7



axis collapses.

SMT characterise the collapse in terms of initial overdensity δ, ellipticity e and

prolateness p. They express the barrier shape, which is constant in the PS formalism,

as a function of time, and finally give the fitting form:

fST (ν) = A

√
2q

π

[
1 +

(
qν2
)−p]

ν exp

[
− qν2

2

]
(30)

We employ the condition that all mass should be in haloes, and thus the mass

function can be normalised:

∫ ∞
0

1

ν
f(ν)dν = 1 (31)

The parameter A is thus given in terms of the parameter p as:

A =
[
1 +

2−pΓ(0.5− p)√
π

]−1
(32)

2 Cosmological N-Body Simulations

2.1 Introduction

We know from theories of structure formation that small perturbations in mass

density amplified by gravity lead to the formation of structure in the universe. In

the linear regime, and in situations with a high amount of symmetry, we can solve

analytic equations to study the growth of these. However, post-the quasi-linear

regime, and in a more general set of situations, it becomes increasingly difficult to

study structure formation analytically.

Here, the use of N-Body simulations is instrumental to modern cosmology. They

are used to study the evolution of perturbations in highly non-linear regimes, and

form an indispensable tool for testing theory and comparing with observations.

In writing N-Body codes, one has to keep in mind some physical requirements

[3]:
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• The simulation volume cannot be assumed to exist in isolation, and the outside

of it has to be accounted for. For this, periodic boundary conditions are used.

In this case the most natural geometry for the simulation volume is the cube.

• The evolution of perturbations should be independent of the boundary condi-

tions.

• The average density over the box should be equal to the average density of

the universe.

• Perturbations averaged over the scale of the box must be of the order of zero.

• The interactions of a large group of particles are approximated by considering

a single particle. Thus their interactions must be collisionless.

• The mass of a single ’particle’ must be smaller than the smallest structures we

want to investigate. Thus, the number of particles is very high for achieving a

mass resolution that enables us to probe scales relevant to non-linear evolution.

N-Body codes evolve the simulation volume after taking in a set of initial con-

ditions consisting of the perturbation and velocity fields at a given starting time.

Subsequently, they work through two steps. Considering a Newtonian N-Body prob-

lem, we have two sets of equations. First, we have the computation of force on each

particle due to all other particles, and secondly, we have the equations of motion

for each particle under the forces on it. A cosmological N-Body code works in the

same modules. One module performs a force computation for each particle, and the

other module then updates the positions and velocities of the particles.

2.2 Equations of Motion

In an expanding universe with scale factor a, we can write equations for a collections

of particles that interact only through gravity as [3]:

ẍ+ 2
ȧ

a
ẋ = − 1

a2
∇xφ (33)

∇2
xφ = 4πGa2ρ̄δ =

3

2
H2Ω2

m

δ

a
(34)
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N-Body codes seek to integrate these equations numerically, and then update the

positions and velocities of each particle at every step. The computational complexity

of this step is O(n). The accelerations and velocities are expressed as discrete-time

derivatives of positions, and Euler’s method of solving differential equations is used

along with the Leap-Frog integration method. The error is of the order of the square

of the time step, which is chosen so as to keep momentum conserved.

2.3 Particle Distribution

We look at a system with a high density of dark matter particles, and we characterise

their distribution by the single-particle distribution function, which is the mass

density of particles in phase space f(x,v, t). The collisionless Boltzmann equation

describes the time evolution of this function [5].

df

dt
=
∂f

∂t
+ v

∂f

∂x
− ∂φ

∂x

∂f

∂v
(35)

Where φ is the gravitational potential. The Poisson equation then becomes

∇2φ = 4πG

∫
f(x,v, t)dv (36)

For a large number of particles, solving these coupled equations is a computa-

tional challenge. In an N-Body simulation, some N particles are sampled from the

underlying distribution, and their discrete equations becomes

ẍi = −∇φ (37)

φ(x) = −G
N∑
1

mj√
(x− xj)2 + ε2

(38)

The parameter ε is called the softening length, which ensures that the poten-

tial stays bounded and becomes constant at very short inter-particle distance, thus

ensuring that the dynamics are collisionless. Thus, it provides the force resolution

for the simulation.
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2.4 Assigning Densities

We divide the simulation cube into cubical cells with side d. Each cell is assigned

a mass depending on the mass of the particles that overlap with it. For a cell with

centre xc, the mass contribution due to a particle at xi is given by

W (xc − xi) =

∫
Π

(
x′ − xc
d

)
S(x′ − xi)dx

′ (39)

Taking x′ as x, this assigned weight becomes a convolution product of the window

W (x) and the shape function S(x).

The total density at the grid point is the contribution summed over all particles.

ρ(xc) =
1

d3

N∑
1

miW (xc − xi) (40)

gadget-2 uses the Cloud-In-Cell interpolation scheme to assign the density

field, the shape function for which is:

S(x) =
1

d3
Π
(x
d

)
? δ(x)A (41)

2.5 Force Computation

We solve the Poisson equation and the equations of motion at every step. The

calculation of forces on each particle is a time-consuming step in the simulations,

and thus attention is paid to algorithms for reducing computational cost. The

computation of force involves three steps [3]:

1. Density Contrast: Masses are assigned to mesh points by using an isotropic

smoothing function as detailed above, and then the density contrast is calcu-

latedby calculating the deviation from the average mass density at each point.

Post this, an FFT is done to convert this density contrast field to the Fourier

domain.

2. Poisson Equation: Next, the code solves the Poisson equation with periodic

boundary conditions. This is done through a variety of methods, as enumer-
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ated below.

3. Gravitational Force: The final step involves computing the gradient of the

obtained potential to get the gravitational force. This can be done in the

Fourier domain directly, or can be done in a direct way to compute a discrete

derivative of the potential obtained at each mesh point.

Direct particle-by-particle force calculation includes N(N −1)/2 calculations for

N particles, and becomes infeasible for a large number of particles, with a complexity

of O(n2). To bring down the computational cost to a logarithmic complexity, there

exist various algorithms.

gadget-2 uses a hybrid TreePM algorithm, that employs a Tree algorithm to

compute short-range force, and the Particle-Mesh Method for long-range forces.

2.5.1 Particle-Mesh Algorithm

This method works by solving the Poisson equation in Fourier space, where the

equation becomes algebraic. The computed density contrast is taken to the Fourier

space using an FFT, and then the Green’s Function method is used to find the

potential. In real space, the potential is the convolution of the density and the

Green’s Function:

φ(x) =

∫
G(x− x′)ρ(x)dx′ (42)

In Fourier space this corresponds to a product

φ̃(k) = G̃(k) ˜ρ(k) (43)

The Green’s function in Fourier space is ˜G(k) = −4πG/k2.

2.5.2 Tree Method

This organises the particles in a hierarchical tree structure. The force exerted on

a given particle by those particles is approximated by the lower order multipole

moments of that group. The accuracy in the force is decided by the expressions in

the multipole moment.
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gadget-2 uses up to a quadrupole term for the force. The simulation volume

is divided into cubes, which are further divided into eight children. Each child

holds one particle, and sends the subsequent ones allotted to it into further descen-

dants. Each cube level holds data about the gravitational force contribution from

the particles it contains. The tree is traversed and the forces added up. This is the

Barnes-Hut tree method.

2.5.3 Gradient

The force is computed by taking the finite difference gradient of the potential func-

tion. Then, the force is de-interpolated back to the mesh points.

2.6 Integrating The Equations of Motion

The integration method used in cosmological simulations needs to be a set of sym-

plectic transformations, to conserve the canonical relations, and thus the total energy

of the system.

gadget-2 uses the leap-frog method, which decomposes the evolution of the

system into a series of ”kick” and ”drift” actions.

The Hamiltonian can be broken into kinetic and potential terms.

The drift operator pushes the position using velocities while keeping the momen-

tum constant:

D(∆t) =

 xi → xi + pi
a2mi

∆t

pi → pi
(44)

The kick operator kicks the velocity (momentum) to an updated value using the

force, keeping the position constant:

K(∆t) =

 xi → xi

pi → pi +
∑

k
mimk
a Fik∆t

(45)

Both the above transformations are keeping in mind comoving cooordinates. It

can be easily checked that both these operations are symplectic.
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gadget-2 uses a ”drift-kick-drift” (DKD) sequence to advance timesteps in the

simulation:

U(∆t) = D
(∆t

2

)
K(∆t)D

(∆t

2

)
(46)

2.7 Initial Conditions

N-Body simulations are usually begun from homogeneous initial conditions, with

initial perturbations easily in the linear regime. Setting up these conditions requires

the computation of velocity field and a perturbation field for the simulation contents.

The density field is related to the gravitational potential by the second equation

in 34. The velocity field can also be related to the potential in the Zel’dovich

Approximation. Using these two relations, once the potential is generated, initial

density contrasts and velocities can be generated [4].

Since the density field is a Gaussian random field, the gravitational potential

used for it is also statistically Gaussian. Such perturbations evolve independently

in time and are completely characterised by their power spectrum. Thus, often, the

power spectrum is used to generate initial density fields.

N-GenIC is a parallel code written by Volker Springel in 2003 for the generation

of initial conditions for cosmological simulations with GADGET. It generates files

in both GADGET-2 formats to be used as inputs.

The code is available from http://www.mpa-garching.mpg.de/gadget/.

This code utilises the Zel’dovich Approximation, and generates a power spectrum

at the given initial redshift to construct the initial density and velocity fields. It can

generate the power spectrum using three methods: 1) The Hu-Eisenstein Transfer

Function, 2) The Efstathiou Parametrization, and 3) An input power spectrum

generated from an outside source.

3 Non-Universality of the Mass Function

The mass function f(ν) provided by the prescription of Press and Schechter [1]

matches observations well for high masses, but deviates in the low mass range.
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An improved functional form was given by Sheth, Mo and Tormen, by assuming

ellipsoidal collapse instead of the standard spherical collapse model used by Press

and Schechter.

The Sheth-Mo-Tormen model assumes that the collapse occurs independently

along three axes, and furnishes a better fit function:

fST (ν) = A

√
2q

π

[
1 +

(
qν2
)−p]

ν exp

[
− qν2

2

]
(47)

This function is supposedly universal: independent of the underlying statistics

of the dark matter density field, and also independent of the background cosmology.

However, recent simulations have indicated that the parameters in this functional

form are in fact not universal [6] . The background cosmology influences the mass

function by modifying the collapse threshold [7] .

Standard ΛCDM models have a primordial index that is a function of scale.

The presence of the cosmological constant also changes the threshold overdensity

for collapse. These complex effects make it hard to investigate the impact of the

power spectrum on the mass function.

3.1 Method and Simulations

The power spectra for standard cosmologies introduces various characteristic scales,

which make the analysis of the impact of the underlying statistics of dark matter

on the mass function difficult.

We thus use a cosmology with power law power spectra P (k) = Akn, which is

scale invariant, and thus a good tool to check whether the non-universality of the

mass function can be connected to the power spectral index. The background cos-

mology is chosen to be Einstein-deSitter, where Ωm = 1. Due to this, the overdensity

threshold is also independent of time.

We ran a suite of cosmological N-body simulations using the publicly available

massively parallel code gadget-2. The initial conditions were created through

the code n-genic, which uses a glass file to sample from an underlying Gaussian

distribution once a power spectrum is supplied to it.We used the power law power

spectrum with a cutoff including for suppressing power at small scales:
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Figure 1: A slice of the simulation box showing the formation of halos

P (k) = kn exp(−k2l2)

Where l = L/10, where L is the particle-mesh grid length of the simulation.

We normalise the RMS mass fluctuations in a spherical tophat window of radius

8 Kpc h−1 to unity at current time (a = 1).

σ8 = 1 (48)

In an Einstein deSitter cosmology, the positive growing mode varies with scale

factor as D(a) = a.
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For a power law cosmology, the value of σ(m, a) varies as:

σ(m, a) =

(
m

mnl(a)

)−n+3
6

Where mnl = 4
3πρr

3
nl.

The non-linear scale evolves with time as rnl ∝ D2/(n+3) = a2/(n+3).

Hence, we can segregate the time dependence of σ(m, a) as σ(m, a) = aσ(m).

Where

σ(m) =

(
m

mnl

)−n+3
6

(49)

We start our simulations from an initial redshift where the RMS mass density

fluctuations in a sphere of 1 Kpc h−1 were equal to 0.05 times the σ8 value.

0.05 =

(
1

8

)−(n+3)/2

a (50)

Which means

1 + zi = 20× 8(n+3)/2 (51)

The mean interparticle distance is taken to be one unit distance, which in our

case is equal to 1 Mpc h−1. The softening length is taken to be ε = 0.03 of the

grid length, which in our case becomes 30 Kpc h−1. The particle-mesh grid used

for short-range force computation has a grid side of 1 Mpc h−1.

The following table shows the suite of simulations.
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n Lbox N3
part zi

+0.0 256 2563 451.58

−0.5 256 2563 268.08

−1.0 512 5123 159.00

−1.2 512 5123 128.96

−1.5 512 5123 94.13

−1.8 1024 10243 68.64

−2.0 1024 10243 55.56

3.2 Analysis and Results

The counts of halos per logarithmic bin of mass dn/d lnm, is given by

dn

d lnm
=

ρ

m

d lnσ−1

d lnm
f(ν) (52)

For our power law cosmology, we can thus write, using (49)

f(ν) =
6

n+ 3

m

ρ

dn

d lnm
(53)

Where ν = δcr/D(a)σ(m) = δcr/aσ(m).

We use the method of the Friends-of-Friends (FOF) algorithm [8] to identify

halos from our simulation box. We use a linking length b = 0.2 in grid units, and

restrict our analysis to halos with a minimum of 60 dark matter particles. Figure 2

shows the evolution of the most massive halo in the simulation for the case n = 0.

We construct mass bins of logarithmic interval ∆ logm = 0.2, and populate them

with halos to construct an estimate of dn/d lnm. We assume Poisson errors for halo

counts in a bin. We then use this to plot f(ν).

We fit the obtained function f to the form of the Sheth-Tormen mass function.

This functional form has two free parameters, p and q. Standard values are given

in literature by p = 0.3 and q = 0.707 [9].

We use the method of χ2-minimisation to best fit our data points to the form of

the mass function and obtain parameters p and q.

For the case n = 0, the best fit parameter value are given by the following table,
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Figure 2: A view of the most massive halo in the simulation box, charting its
evolution through time. Brightness indicates dark matter density.
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along with their minimum χ2 value.

z p q χ2
min

0.0 0.221 1.117 2.287

0.5 0.208 1.107 1.313

1.0 0.194 1.121 3.181

3.0 0.156 1.090 8.144

Figure 3 shows the confidence contours and fits for the mass function for snapshot

outputs at four different redshifts.

We see that the values of the parameters p and q deviate significantly from the

standard. The slight run of p with redshift is attributed to the imperfect index

of the realisation of the power spectrum. Nevertheless, within the 3-σ significance

level, the parameters form a good fit.

Future work includes completing the simulations and analysis for a range of

values of n, and then trying to establish a fit between the values of p and q and n,

in order to formalise the non-universality of the halo mass function.
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Figure 3: Halo Mass Function fits for halos generated from four snapshots, with 1,2,3
- σ confidence contours. Sheth-Tormen standard fit function shown for comparison.
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